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Abstract 
In	this	paper,	we	reflect	on	our	past	work	towards	understanding	how	to	design	visualizations	for	fitness	
trackers	that	are	used	in	motion.	We	have	coined	the	term	“visualization	in	motion”	for	visualizations	that	
are	used	in	the	presence	of	relative	motion	between	a	viewer	and	the	visualization.	Here,	we	describe	how	
visualization	in	motion	is	relevant	to	sports	scenarios.	We	also	provide	new	data	on	current	smartwatch	
visualizations	for	sports	and	discuss	future	challenges	for	visualizations	in	motion	for	fitness	 trackers.	
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1. Introduction 

Fitness	trackers,	such	as	smartwatches	and	fitness	bands	record	a	variety	of	data.	Most	of	
these	devices	also	visualize	the	collected	data	and	make	it	immediately	available	to	wearers.	
Smartwatch	faces,	in	particular,	have	become	mini	data	dashboards	that	can	give	an	overview	
of	data	such	as	step	counts,	heart	rates,	locations,	sleep	information	or	even	device-external	
data	such	as	the	current	temperature	or	weather	predictions.	Due	to	their	small	screen	size	
and	usage	context,	fitness	tracker	screens	pose	several	novel	and	interesting	challenges	to	
visualization:	visualizations	need	not	only	to	be	small	and	glanceable	but	also	often	to	be	read	
in	motion.	For	example,	when	an	athlete	trains	for	a	race,	they	can	only	afford	quick	glances	
at	a	smartwatch	while	running,	to	concentrate	on	the	path	to	take	and	avoid	accidents.	As	
stopping	the	race	to	look	at	a	watch	is	not	a	desired	option,	the	watch	needs	to	be	read	while	
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the	runner’s	body,	including	their	arms,	is	moving.	During	a	quick	glance	at	the	tracker,	the	
athlete	may	want	to	take	in	multiple	information	at	once:	current	race	time,	heart	rate,	or	
distance	run	are	just	three	examples.	Unfortunately,	there	is	still	little	advice	on	how	to	design	
effective	information	dashboards	for	fitness	trackers,	and	existing	designs	are	built	without	
strong	empirical	foundations.	
To	address	this	problem	we	have	recently	begun	to	work	on	two	directions:	a)	visualizations	

in	motion,	in	which	we	assess	the	effects	of	motion	on	the	perception	of	visualizations	and	b)	
visualizations	for	fitness	trackers	and,	in	particular,	smartwatches.	In	this	paper,	we	briefly	
introduce	our	past	work	with	a	focus	on	smartwatch-type	fitness	trackers,	provide	some	new	
data	on	existing	smartwatch	faces	for	sports,	and	outline	dedicated	challenges	for	visualization	
in	motion	for	fitness	trackers.	
	
2. Background 

While	neither	visualization	in	motion	nor	fitness	tracker	visualization	has	a	long	history	
of	research,	some	relevant	past	work	does	exist.	The	following	background	presents	the	
definition	of	visualization	in	motion	and	briefly	outlines	the	larger	research	space.	The	second	
section	focuses	on	fitness	tracker	visualization	in	the	context	of	health	and	sports,	and	that	of	
visualization	in	motion	in	relation	to	fitness	trackers.	
	

2.1. What is Visualization in Motion? 

In	our	recent	paper	[1],	we	defined	visualization	in	motion	as:	
	

Visual	data	representations	that	are	used	in	contexts	that	exhibit	relative	motion	
between	a	viewer	and	an	entire	visualization.	

	
Visualizations	in	motion	specifically	concern	relative	movement	between	visualizations	and	

viewers	and,	therefore,	they	are	different	from	animation	of	visualization	components	that	
are	meant	to	express	highlights,	to	smooth	transitions	between	views	[2,	3,	4,	5],	or	to	morph	
between	different	representations	[6,	7,	8,	9,	10].	Relative	motion	between	entire	visualizations	
and	viewers	is	relatively	common	in	the	sports	context,	but	has	not	been	explored	in	depth.	
Examples	include	stationary	players	who	sit	in	front	of	a	screen	while	playing	a	sports	game,	in	
which	a	game	character	(e.g.,	an	American	football	player)	moves	with	attached	donut	charts	
showing	data	related	to	the	character	(Figure	1a),	audiences	sitting	in	a	stadium	while	watching	
an	augmented	basketball	game	that	shows	data	next	to	players	(Figure	1b),	people	walking	
across	or	driving	by	physicalizations	(Figure	1c	and	1d),	a	person	reading	how	many	calories	
they	have	burned	from	a	fitness	tracker	while	exercising	(Figure	1e),	and	a	traveler	navigating	
using	a	phone	while	walking	(Figure	1f).	These	scenarios	can	be	grouped	into	three	categories	
of	visualization	in	motion:	
	

• moving	visualizations	&	stationary	viewer	
• stationary	visualizations	&	moving	viewer	
• moving	visualization	&	moving	 viewer	



	

  	
Moving	visualization	&	stationary	viewer.	 Stationary	visualization	&	moving	viewer.			Moving	visualization	&	moving	viewer.	

Figure 1: Visualization scenarios that involve different types of relative movement between viewers 
and visualization. Image permissions are listed in the acknowledgments. 

 
 

In	this	paper,	we	bring	together	our	work	on	fitness	trackers	and	visualization	in	motion,	and	
thus	focus	on	the	last	group	that	involves	moving	visualizations	&	moving	viewer.	Our	specific	
focus	on	fitness	trackers	was	motivated	by	the	fact	that	they	already	carry	visualizations	and	
their	wearers’	are	not	only	often	moving	but	also	have	information	needs	while	on	the	go,	such	
as	learning	about	their	performance	and	condition.	
	

2.2. Fitness Tracker Visualizations 

Choosing	what	type	of	data	and	how	to	show	it	to	wearers	is	a	fundamental	challenge	that	
can	impact	how	devices	are	adopted.	In	our	own	work,	we	used	commercial	fitness	trackers	
such	as	fitness	bands	and	smartwatches	because	our	focus	was	on	data	representation	and	
not	on	the	development	of	new	technologies.	However,	we	acknowledge	that	many	types	of	
wearable	displays	have	been	proposed	[11]	and	discuss	some	challenges	related	to	these	in	our	
research	agenda.	
Niess	et	al.	[12]	studied	the	impact	of	various	approaches	to	represent	unmet	fitness	tracker	

goals	through	visualization	on	rumination,	highlighting	that	multicolored	charts	on	fitness	
trackers	may	lead	to	demotivation	and	negative	thought	cycles.	Havlucu	et	al.	[13]	interviewed	
20	professional	tennis	players	and	found	that	the	players’	abandonment	of	their	trackers	was	
due	to	the	type	of	information	displayed	on	the	fitness	trackers.	Participants	wished	to	see	
tennis-specific	data,	recovery	rate,	and	nutrition,	as	well	as	precise	technical	data	regarding	
their	tennis	performance,	such	as	where	the	ball	hit	the	racket,	the	speed	of	a	stroke,	how	the	
ball	bounced	off	the	floor,	general	mobility	on	the	court,	as	well	as	weak	points	and	errors	
regarding	their	own	game.	
Outside	of	the	professional	sports	context,	smartwatches	also	have	a	lot	of	potential	to	be	an	

essential	part	of	the	personal	health	movement.	Yet,	even	with	a	potentially	large	target	audience,	
visualization	guidelines	for	fitness	trackers	are	still	sparse.	Most	of	the	past	studies	discussed	
health	and	physical	activity	data	representations	on	smartwatches	and	mentioned	the	challenges	
of	representing	these	data	types	[14].	Van	Rossum	[15]	suggested	smartwatch	visualizations	
aiming	for	easy-to-understand,	clear	visuals,	using	a	black	background	for	contrast,	and	less	
disturbance	in	dim	environments.	Albers	et	al.	[16]	showed	that	the	tasks	that	wearers	do	when	
exploring	a	visualization	are	influenced	by	the	visualization’s	design	and	choices	of	visual	factors	
(e.g.,	position,	color),	mapping	variables	(e.g.,	raw	data,	averages),	and	computational	variables	



(how	aggregated	data	are	computed).	Pektaş	et	al.	[17]	showed	how	visualization	using	icons	and	
emoji	on	warnings	and	alerts	could	motivate	wearers	to	monitor	health	related	information.	In	
contrast	to	these	works,	we	are	interested	in	fitness	tracker	visualization	in	motion,	specifically	
when	wearers	are	on	the	move	during	sports	activities,	which	is	less	explored	in	the	literature.	
	

2.3. Visualization in Motion for Wearable and Mobile Devices 

In	the	context	of	wearable	devices,	relative	motion	is	most	often	created	when	both	viewers	
and	visualizations	are	in	motion	such	as	during	a	run	or	walk.	Several	previous	studies	on	mobile	
phones	have	shown	that	walking	increased	workload	and	reduced	performance	in	reading	tasks	
[18,	19,	20].	As	cognitive	resources	need	to	be	similarly	shared	between	navigation	and	reading	
data,	it	seems	reasonable	to	expect	similar	negative	effects	for	visualizations	in	motion	on	
fitness	trackers.	However,	the	exact	effects	have	not	been	studied	in	enough	depth	to	make	
recommendations	for	the	design	of	visualization	in	motion.	Although	moving	participants	were	
involved	in	the	studies	by	Schiewe	et	al.	[21]	on	visualizations	for	real-time	feedback	during	
running	activities,	by	Amini	et	al.	[22]	on	in-situ	health	and	fitness	data	exploration	for	fitness	
trackers,	and	by	Langer	et	al.	[23]	on	crash	risk	indication	applications	for	sports	smartwatches	
in	the	context	of	mountain	biking,	the	effects	of	relative	movement	between	displaying	charts	
and	exercising	people	received	little	to	no	dedicated	attention.	
However,	we	may	take	inspiration	from	another	research	area	containing	moving	viewers	and	

moving	visual	targets:	immersive	analytics.	Literature	from	psychology	has	shown	that	walking	
in	VR	may	have	negative	impact	on	multi-object	tracking	[24].	In	fact,	several	research	efforts	
in	VR	have	targeted	a	viewer’s	motion,	such	as	examples	illustrated	in	Locomotion	Vault	[25].	
Examples	collected	by	Locomotion	Vault	includes	one	showing	that	in	a	virtual	environment,	
the	viewer’s	spatial	memory	can	benefit	from	common	motion	effects	such	as	walking.	Grioui	
and	Blascheck	[26]	conducted	a	first	pilot	on	heart	rate	reading	from	a	virtual	smartwatch	in	
the	context	of	a	VR	game	that	gave	preliminary	indications	that	heart	rate	visualizations	in	the	
form	of	summary	charts	might	be	effective	for	making	decisions	to	reach	heart	rate	goals.	Thus,	
how	people	will	perform	when	reading	visualizations	in	motion	in	an	immersive	environment	
still	requires	more	dedicated	work.	
In	summary,	literature	on	how	visualizations	are	read	under	motion	or	how	they	should	be	

designed	to	be	effective	in	a	sports	context	is	still	too	sparse	to	make	clear	recommendation.	
Next,	we	outline	some	of	our	past	research	on	how	visualizations	are	currently	designed	for	
sports-related	smartwatch	faces	before	moving	on	to	recommend	a	research	agenda	for	this	
emerging	topic.	
	

2.4. Guidelines for Visualization Design 

Ample	evidence	exists	that	visualization	choice	and	design	will	impact	the	readability	of	
visualizations	without	motion.	These	design	factors	need	to	be	explored	again	specifically	for	
micro	(very	small)	visualizations	on	fitness	trackers	used	while	in	motion.	Example	factors	
include	representation	type	[27,	28],	the	visualization	complexity	[29,	30],	the	decoration	of	
the	representation	[31,	32,	33],	the	size	of	the	visualization	[34],	the	color	selection	[35,	36],	
and	specifically	for	a	micro	display	with	limited	space,	the	visualization	density	[37].	Previous	



research	has	shown	that	cognitive	overload	can	occur	when	too	much	information	is	presented	
during	attention-demanding	sports	like	tennis	[38].	As	such,	information	needs	to	likely	be	
minimal,	context-specific,	and	glanceable	to	the	wearers.	Gouveia	et	al.	[39]	showed	that	the	
average	wearer’s	involvement	with	the	trackers	was	brief,	5-sec,	without	further	interaction.	
However,	we	expect	the	duration	to	be	much	shorter	than	that	during	sports	activities.	Previous	
research	showed	that	people	could	effectively	read	even	complex	sleep	visualizations	on	fitness	
trackers	[40],	perform	simple	comparison	tasks	with	visualizations	on	smartwatches	within	
several	hundred	milliseconds	[41],	providing	evidence	that	visualizations	could	be	effective	
forms	of	data	representations	in	the	context	of	fitness	trackers.	However,	ambient	illumination,	
lighting	effects	[42,	43]	or	motion	textures	[44]	for	fitness	trackers	could	also	be	a	possible	way	
to	achieve	glanceability	during	attention-requiring	sports	activities,	during	which	wearers	may	
get	feedback	through	color	changes,	brightness	levels,	or	texture	changes.	
Yet,	what	exact	limits	are	for	how	much	information	to	be	displayed	and	at	what	sizes	is	still	

underexplored.	Should	all	data	be	represented	with	a	visualization?	If	not,	what	would	be	a	
good	number	to	have?	
	
3. Current Visualizations for Smartwatch Faces 

The	screens	that	wearers	of	smartwatches	look	at	most	often	are	the	“home”	screen	or	
“smartwatch	face.”	These	smartwatch	faces	show	time	but	also	a	variety	of	additional	data	to	
wearers	and	are	often	designed	for	specific	themes,	including	sports.	To	better	understand	what	
type	of	data	current	sports	watch	faces	show	to	wearers	and	how	this	data	is	represented,	we	
conducted	a	systematic	review	of	sports	category	tagged	watch	faces	from	the	Facer	App	[45].	
	

3.1. Data Collection 

We	decided	to	collect	watch	faces	from	the	Facer	App,	one	of	the	most	popular	smartwatch	
face	distribution	websites.	It	contains	a	Top100	page	that	lists	the	premium	or	free	watch	
faces	of	Apple	and	WearOS/Samsung	smartwatches.	Because	the	list	for	the	Apple	Watch	did	
not	consistently	contain	100	faces,	we	chose	to	focus	on	the	WearOS/Samsung	watch	faces.	
Nevertheless,	the	watch	faces	we	have	collected	can	also	be	used	in	“square-shaped”	Apple	
watch-like	watches.	We	manually	collected	the	metadata	of	the	top	100	smartwatch	faces	every	
Sunday	for	one	month	because	the	premium	list	was	recalculated	on	Sunday,	starting	from	
March	14,	2021.	The	metadata	collected	for	each	watch	face	included	its	rank,	name,	category,	
link,	and	thumbnail.	Among	the	400	top	watch	faces	we	collected,	184	were	unique	watch	faces,	
as	several	appeared	in	the	top	100	for	multiple	weeks.	From	the	184	unique	smartwatch	faces,	
we	found	that	42	watch	faces	were	categorized	as	sports	watch	faces.	
We	analyzed	the	watch	faces	with	the	extracted	image.	If	a	design	was	unclear	from	the	

thumbnail	image,	we	went	to	the	Facer	website	to	look	at	the	simulated	watch	face	graphic.	
We	group	our	results	according	to	the	data	shown	on	a	sport-tagged	watch	face	and	data	
representation		 types.	



	

	
Figure 2: Example of sports smartwatch faces. Watch face design by: a) JN–Rolling   (JN–WatchFaces), 
b) New Design (Enid Rodriguez), and c) Voyager GPS-01RB Sport 24H (Luke Time) from Facer App   [45]. 

 
 

3.2. What Data is Shown on Sport Watch Faces? 

One	of	the	difficulties	with	designing	data	visualizations	for	smartwatch	faces	is	that	these	
visualizations	typically	show	many	types	of	independent	data	(steps,	weather,	battery	levels,	etc.)	
that	need	to	be	shown	in	a	coherent	watch	face	design.	These	non-time/date	data	functionalities	
on	smartwatches	are	called	complications	[46].	In	this	sense,	watch	faces	with	several	complica-	
tions	can	be	considered	small	personal	dashboards	with	distinctive	design	challenges.	These	
design	challenges	include	limited	display	space	for	a	large	number	of	possible	complications,	
device	form	factors,	as	well	as	the	specific	context	of	use,	in	our	case,	sports	activity,	that	often	
requires	information	to	be	readable	at	a	glance.	In	addition,	watch	faces	require	that	time	or	date	
is	readable	and	often	remains	the	primary	data	shown.	We	present	our	findings	from	analyzing	
42	sports	watch	faces	in	the	following.	

Number of Data Types. The	watch	faces	from	the	sports	category	contained	a	median	
of	six	data	types,	similar	to	Islam	et	al.’s	smartwatch	face	survey	[47],	in	which	participants	
reported	a	median	of	five	data	types.	

Types of Data. Health	&	fitness	related	data	were	the	most	common.	We	found	41.05%	health	
&	fitness	related	data,	among	which	step	count	and	heart	rate	were	the	most	common.	However,	
the	watch	faces	also	contained	35.37%	weather	&	planetary	data	such	as	temperature	and	sky	
condition,	and	23.58%	device	&	location	related	data	such	as	watch	and	phone	battery	level.	
Among	the	top	10	most	common	data	items,	we	found	four	(step	count,	heart	rate,	distance	
traveled,	and	calories	burned)	that	were	health	&	fitness	related	data.	The	day’s	temperature,	
including	weather	information,	moon	phase,	and	sunset/sunrise	time,	were	the	most	frequently	
displayed	weather	data	on	sports	watch	faces.	Watch	battery	level,	which	is	the	first	and	most	
displayed	data	item,	as	well	as	phone	battery	level	were	device	location	related	data	items	
displayed	on	the	sports	watch	faces.	
	

3.3. How are the Sport Watch Faces Designed? 

Watch	faces	generally	were	comprised	of	components	that	we	group	into	those	representing	
time,	complications,	and	decorations,	each	with	its	representation	styles.	Some	of	the	example	
sports	smartwatch	faces	are	shown	in	Figure	2.	



 

 
	

 
	   

  

bp
m 

	
	
	
	

 	
	
	
	

Figure 3: The average number of representation types on each sports watch face. 
 
 
Time display. Watch	faces	can	be	divided	into	digital,	analog,	and	hybrid	watch	faces	depending	
on	the	time	display.	Digital	watch	faces	represent	time	information	as	HH:MM:SS	for	hours,	
minutes,	and	potentially	seconds.	Analog	watch	faces	typically	use	the	hour,	minute,	and	second	
hands	to	indicate	the	time,	to	resemble	conventional	analog	watches.	Hybrid	watch	faces	show	
both	digital	and	analog	time	displays.	Our	analysis	showed	that	the	majority	of	premium	sports	
watch	faces	were	hybrid	watch	faces	(40.5%),	followed	by	digital	watch	faces	(33.3%)	and	analog	
watch	faces	(26.2%).	
Data Types Representations. We	found	seven	ways	of	representing	data,	that	were	based	
on	combinations	of	text,	 icons,	and	charts,	as	shown	in	Figure	3.	As	icons,	we	classified	
graphical	content	not	in	the	strict	semiotic	sense	and	more	analogously	to	how	they	were	used	
in	computing.	Here	icons	are	a	type	of	image	that	represents	something	else.	As	such	our	icons	
can	be	both	semiotic	symbols			G or	icons			  .	Figure	3	shows	the	average	number	of	
representation	types	on	each	sports	watch	face.	A	simple	text	label	(Only	Text,	 68 )	was	
the	
most	common	representation	type	and	was	used	for	2	data	types	on	average	on	each	watch	
face	(M	=	2,	95%	CI:	[1.45,	2.57]).	Icons	accompanied	by	text	labels	(Icon+Text,	 68 )	were	the	
second	most	common	(M	=	1.6,	95%	CI:	[1.17,	2.05]).	In	Islam	et	al.’s	survey	[47],	Icon+Text	
had	been	the	most	common	representation	type,	used	to	display	two	kinds	of	data	types	on	
average	on	each	watch	face	(M	=	2.05,	95%	CI:	[1.78,	2.32])	followed	by	Text	Only	(M	=	1.38,	95%	
CI:	[1.13,	1.66]).	Both	evaluations	clearly	show	that	text	is	the	most	frequent	way	to	represent	
data	on	watch	faces	whiles	charts	or	charts	combined	with	text	or	icons	were	rare	in	practice.	
Chart+Text	68bpm        (M		=	0.69,	95%	CI:	[0.4,	1]),		Chart	Only	 (M		=	0.55,	95%	CI:	[0.38,	 0.71]),	
Chart+Icon+Text	 68bp

m 
(M	=	0.45,	95%	CI:	[0.24,	0.71]),	and	Chart+Icon	 (M	=	0.14,	

95%	CI:	[0.05,	0.29])	appeared	on	average	less	than	once	per	sports	watch	face.	One	notable	
difference	in	the	data	was	the	difference	in	Only	Icon	displays.	Examples	for	representations	
that	rely	purely	on	a	small	image,	such	as	weather	icons	(		  )	are	still	rare	on	watch	faces.	
In	this	sports	watch	faces	analysis,	Only	Icon	displays	were,	as	expected,	much	more	rare	and	
we	saw	them	only	for	weather	data	(14×),	moon	phases	(2×),	and	wind	directions	(1×).	



4. Research Agenda for Visualizations in Motion on Fitness 
Trackers 

When	fitness	trackers	are	worn	during	sports	activities	that	involve	moving	one’s	arms	
(walking,	running,	swimming,	skiing,	climbing	etc.),	the	displays	will	be	in	motion	relative	to	
the	wearers	gaze.	Depending	on	the	activity	the	relative	motion	will	be	more	or	less	predictable,	
and	more	or	less	quick,	and	the	wearer	will	have	different	information	needs.	Next,	we	outline	
several	aspects	of	visualization	design	for	fitness	trackers	that	require	more	research	when	the	
intended	use	involves	motion.	
	

4.1. Understanding the Influence of Motion 

Motion	characteristics	such	as	speed,	acceleration,	trajectories,	or	direction	may	have	an	
impact	on	the	readability	of	visualizations.	Yao	et	al.	[1]	conducted	two	first	evaluations	about	
how	donut	charts’	moving	speed	and	trajectory	affected	the	reading	accuracy.	Their	results	
showed	that	participants’	performance	was	better	on	linear	trajectories	and	slow	speed	than	
that	on	irregular	trajectories	and	fast	speed.	However,	in	their	experiment,	all	participants	were	
stationary	and	sat	in	front	of	a	screen	larger	than	13	inches.	Because	fitness	trackers	have	a	
much	smaller	display	size	and	many	application	scenarios	involve	moving	viewers,	the	impact	
of	motion	characteristics	require	further	research	in	this	context.	
In	addition,	motion	in	realistic	indoor	and	outdoor	scenarios	will	entail	additional	challenges	

such	as	changing	lighting	conditions,	the	presence	of	equipment,	and	a	primary	task.	The	
type	of	sport	itself	will	largely	determine	the	types	of	motion	characteristics	and	the	extent	
of	secondary	factors.	As	such	dedicated	research	is	likely	necessary.	The	characteristics	of	
the	different	sport	types	determine	the	continuity	of	the	viewer’s	movement	and	the	presence	
of	required	sports	equipment	can	directly	affect	the	viewer’s	ability	to	read	or	even	attach	a	
fitness	tracker.	For	example,	swimming	goggles	may	filter	certain	light,	reduce	the	field	of	
view,	or	having	to	wear	heavy	coats	while	skiing	might	make	it	difficult	to	access	a	wrist-worn	
smartwatch	screen.	Finally,	the	needed	concentration	on	primary	tasks	determines	the	length	
of	time	available	for	the	viewer	to	read	from	their	fitness	tracker.	
	

4.2. Understanding How Context Matters 

The	primarily	intended	context	of	a	fitness	tracker’s	use	needs	to	be	considered	in	its	graphical	
and	interaction	design.	The	default	for	some	Garmin	watches,	for	example,	is	to	show	data	
during	exercise	using	a	large	black	font	on	a	white	background.	No	visualizations	are	shown.	Is	
this	the	most	effective	way	to	communicate	data	to	wearers	or	the	one	that	ensures	the	most	
safety	during	other	primary	tasks?	Especially	contexts	with	divided	attention,	for	example,	
glancing	during	driving,	cycling,	or	running,	require	further	research	attention.	Here,	viewers	
can	only	afford	quick	glances	at	watch	faces.	Visualizations	in	these	settings	are	difficult	to	
evaluate	and	test,	and	future	work	is	needed	not	only	on	which	visualizations	are	glanceable	
but	also	on	study	methodologies	to	actually	measure	glanceability	during	sports	activities.	
Another	important	factor	is	the	intended	task	context	for	watch	faces.	Islam	et	al.	[48]	showed	

that	with	dedicated	ideation	exercises,	watch	faces	could	be	easily	envisioned	that	target	specific	



usage	contexts	such	as	sightseeing	in	their	case.	Digital	watch	faces	are	easy	to	switch,	and	
it	would	be	interesting	to	study	the	impact	of	dedicated	but	changing	watch	faces	on	wearers.	
As	mentioned	above,	the	design	as	well	as	the	placement	of	fitness	trackers	needs	to	likely	be	
specific	to	different	types	of	sports.	During	swimming,	for	example,	it	is	almost	impossible	
to	read	in-situ	performance	such	as	heart	rate	or	lap	times	unless	the	swimmer	stops	to	see	
their	smartwatch.	Completely	new	technology	might	be	needed	to	support	certain	sports	well.	
Attaching	visualizations	directly	on	the	bottom	of	a	swimming	pool	may,	for	example,	be	more	
effective	information	displays	for	swimmers	than	a	wearable	device.	
	

4.3. Display Types 

Being	able	to	focus	on	the	primary	task	is	vital	during	sports	activities.	The	capabilities	of	
the	technology	chosen	to	display	visualizations	in	motion	may	have	a	large	impact	on	how	
well	athletes	can	focus	on	their	performance.	Heller	et	al.	[11]	discussed	a	design	space	for	
wearable	displays	with	two	main	dimensions:	on-body	placement	and	display	content.	As	they	
showed,	branching	out	from	commercial	fitness	trackers	to	wearable	accessories,	clothing,	or	
skin	and	body	projections	is	a	possibility	and	ample	research	opportunities	for	visualization	
design	exist—not	only	for	performance-oriented	displays	but	also	for	ambient	visualization	[49].	
In	addition,	interaction	with	these	displays	could	be	taken	into	account.	Burstyn	et	al.	[50],	for	
example,	presented	an	interactive	wrist	worn	device	prototype	in	which	the	display	could	adjust	
to	the	wearer’s	body	pose.	As	hand	and	arm	postures	can	change	rapidly	during	an	activity,	
fitness	trackers	that	are	body-pose	aware	could	change	the	rotation,	size,	and	location	of	a	
visualization	to	be	most	readable.	While	not	technically	“visual,”	another	possibility	to	represent	
data	is	to	examine	sonification,	which	involves	mapping	information	to	sound	characteristics.	
Godbout	and	Boyd	[51]	showed	how	speed	skaters	are	alerted	with	sonification	when	something	
is	wrong	and	additionally	how	they	are	informed	in	which	way	they	performed	incorrectly.	
It	would	be	valuable	to	explore	further	how	to	leverage	sonification	to	facilitate	more	fluid	
smartwatch	interaction	while	“on	the	go.”	Apart	from	sonification,	other	non-visual	channels	
such	as	touch	can	also	be	useful	in	eyes-free	contexts.	For	example,	in	Neshati	et	al.’s	work	
[52]	on	tactile	line	chart	reading,	a	tip	on	participants’	skin	allowed	them	to	perceive	the	data.	
Similarly	other	tactile	methods,	including	vibration,	should	be	further	explored	to	determine	
what	kind	of	and	how	well	data	can	be	read	from	this	sensory	channel.	
	
5. Conclusions 

The	goal	of	this	paper	is	to	bring	attention	to	an	interesting	and	still	wide-open	area	of	
research	in	the	domain	of	sports:	visualization	in	motion	for	fitness	trackers.	We	explained	
visualization	in	motion	as	a	direction	of	research	and	how	it	is	relevant	to	fitness	trackers.	
We	also	provided	evidence	of	current	practice	of	sports	watch	faces	and	outlined	in	a	brief	
research	agenda	what	questions	remain	to	be	explored.	Our	survey	on	sports	watch	faces	
showed	that	wearers	had	six	complications	on	average,	in	addition	to	time	on	their	watch	faces.	
The	highest	number	of	complications	was	16.	Future	research	is	needed	to	determine	how	
many	complications	on	a	small	smartwatch	display	can	effectively	communicate	information	
to	wearers	when	doing	sports	activities.	There	are	several	avenues	of	scalability	to	explore:	



more	data,	smaller	size,	and	more	visualization	in	the	context	of	smartwatch	visualization	in	
motion	and	specifically	the	glanceability	of	these	visualizations.	A	general	research	question	
that	remains	to	be	solved	is	how	visualizations	are	read	and	studied	in	the	context	of	real	
application	scenarios.	In	summary,	we	discussed	the	need	to	research	the	following	aspects	of	
visualization	design	for	fitness	trackers:	

• readability	of	different	visual	designs	such	as	chart	types,	color	choices,	etc.,	
• scalability	of	visualization	numbers,	size,	and	types	of	data	 items,	
• glanceability	of	different	visual	designs,	
• the	impact	of	motion	factors	in	the	context	of	specific	sports,	
• the	impact	of	readability	of	visualizations	under	divided	attention,	
• and	different	sensory	modalities	for	data	representation	on	fitness	trackers.	

Visualizations	in	motion	are,	however,	also	relevant	in	other	sports-related	scenarios	as	we	
outlined	earlier:	augmented	reality	when	watching	sports,	sports	video	games,	or	when	static	
visualizations	are	read	by	athletes	during	their	activities.	Similar	to	the	specific	challenges	
outlined	for	fitness	trackers,	these	other	scenarios	require	future	research.	We	hope	that	our	
paper	will	be	used	as	a	foundation	for	discussion	and	inspiration	for	future	work	that	tackles	
the	interesting	remaining	research	questions	on	visualization	in	motion.	
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